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A B S T R A C T   

Background: Scoring systems are highly interpretable and widely used to evaluate time-to-event outcomes in 
healthcare research. However, existing time-to-event scores are predominantly created ad-hoc using a few 
manually selected variables based on clinician’s knowledge, suggesting an unmet need for a robust and efficient 
generic score-generating method. 
Methods: AutoScore was previously developed as an interpretable machine learning score generator, integrating 
both machine learning and point-based scores in the strong discriminability and accessibility. We have further 
extended it to the time-to-event outcomes and developed AutoScore-Survival, for generating time-to-event scores 
with right-censored survival data. Random survival forest provided an efficient solution for selecting variables, 
and Cox regression was used for score weighting. We implemented our proposed method as an R package. We 
illustrated our method in a study of 90-day survival prediction for patients in intensive care units and compared 
its performance with other survival models, the random survival forest, and two traditional clinical scores. 
Results: The AutoScore-Survival-derived scoring system was more parsimonious than survival models built using 
traditional variable selection methods (e.g., penalized likelihood approach and stepwise variable selection), and 
its performance was comparable to survival models using the same set of variables. Although AutoScore-Survival 
achieved a comparable integrated area under the curve of 0.782 (95% CI: 0.767–0.794), the integer-valued time- 
to-event scores generated are favorable in clinical applications because they are easier to compute and interpret. 
Conclusions: Our proposed AutoScore-Survival provides a robust and easy-to-use machine learning-based clinical 
score generator to studies of time-to-event outcomes. It gives a systematic guideline to facilitate the future 
development of time-to-event scores for clinical applications.   

1. Introduction 

The interpretable predictive model is essential for supporting med
ical decision-making, where doctors can easily understand how the 
models make predictions in a transparent manner. There has been a 
growth in inherently interpretable machine learning models [1,2], 
where risk scoring systems were highly preferred in healthcare settings. 
Recently, Ustun et al. developed Risk-calibrated Supersparse Linear 
Integer Model (RiskSLIM) [3] and further improved it through the 

optimization of risk scores [4]. Besides, we previously provided a 
practical solution, AutoScore [5], as an interpretable machine learning- 
based automatic clinical score generator. Users can automatically 
generate a data-driven clinical score given a dataset in various clinical 
applications [6], facilitating automated machine learning (AutoML) [7] 
solutions in healthcare. However, those models were initially designed 
for binary outcomes, and extending them to time-to-event outcomes is of 
great value. 

There are different regression and machine learning options for the 
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prediction of time-to-event outcomes. Typically, these models generate 
a probability of not having the event (i.e., surviving) at a specified time 
point (e.g., predicting 30-day mortality). However, like most predictive 
models, such algorithms fail to generate an indicative score for 
straightforward risk stratification. In comparison, scoring systems would 
be strongly preferred in healthcare since they are highly transparent and 
interpretable, based on addition, subtraction, and multiplication of a 
few sparse numbers, facilitating clinical practice even without the need 
for a computer. At present, this type of time-to-event score has been 
pervasively used in healthcare, such as survival prediction score [8], 
Palliative Prognostic Score [9], Respiratory ECMO Survival Prediction 
[10] across different clinical disciplines. They were developed to sup
port treatment decisions by forecasting the time to patient outcome (e. 
g., death or disease progression) or by projecting the change in risk over 
time. However, these time-to-event scores were created ad-hoc via 
manual variable selection based on expert opinion, suggesting the 
unmet need for a robust and efficient generic method for deriving time- 
to-event scores. 

Traditionally, survival data are analyzed using Cox regression, where 
variable selection is predominantly performed by stepwise selection 
(Akaike information criterion [AIC] [11,12] and the Bayesian informa
tion criterion [BIC] [13,14]) or by penalizing the partial likelihood [15] 
(i.e., least absolute shrinkage and selection operator [LASSO] [16]). 
However, such approaches are not efficient when working with big data, 
e.g., the electronic health records (EHR) [17]. Machine learning, such as 
random survival forest [18–20], XGBoosting [21], support vector ma
chine (SVM) [22], and deep learning models (artificial neural networks) 
[23] have been applied for more efficiently handling high-dimensional 
survival data, but most of them are black boxes that are challenging to 
comprehend. Thus, there is an unmet need to develop a parsimonious 
survival prediction model with easy access to validation in the context of 
high-dimensional EHRs. 

To address these challenges, we extended previously mentioned 
AutoScore [5,24] to survival data and systematically presented 
AutoScore-Survival, a generic method for developing parsimonious 
time-to-event scores. The proposed AutoScore-Survival framework can 
automatically generate a single indicative score for predicting patients’ 

time-to-event outcomes and was demonstrated to build an actual score 
for survival prediction of intensive care unit (ICU) patients. We also 
compared the AutoScore-Survival-created scores with other standard 
baselines. 

2. Methods 

The AutoScore framework was developed to generate prediction 
scores for binary outcomes [5,24]. It consists of six modules: Module 1 
ranks variables using machine learning methods, Module 2 categorizes 
continuous variables to deal with nonlinearity and simplify interpreta
tion, Module 3 derives scores from a subset of variables using the logistic 
regression, Module 4 selects the best number of variables through 
parsimony plot, Module 5 allows fine-tuning of cut-offs for categorizing 
continuous variables for preferable interpretation and Module 6 per
forms the final performance evaluation of the score. Our proposed 
AutoScore-Survival method extends this framework to time-to-event 
data by modifying relevant modules. Fig. 1 illustrates the six-module 
framework of AutoScore-Survival, where the modules modified from 
AutoScore are highlighted in blue shape and elaborated in detail in the 
following subsections. 

2.1. Variable ranking with random survival forests at Module 1 

In real-world clinical applications, we split the data set into training, 
validation, and test sets. The training set is used to derive the score. The 
validation set is used for intermediate performance evaluation and 
parameter selection. The test set acts as an unseen dataset and is used to 
generate the final model performance. Let 

(
ti, δi,Xi) denote the survival 

data for the ith individual in the training set. ti denotes the time of the 
event if censoring indicator δi = 1 and time of censoring if δi = 0. Xi 

denotes the vector of p available predictor variables. Our goal is to rank 
all p available variables and select m parsimonious variables (m < p) for 
the following score derivation. For simplicity of notation, we will omit i 
in the subscript and superscript when no confusion arises. 

We use random survival forest (RSF) [18,19,25], an ensemble ma
chine learning algorithm, to analyze survival data and rank variables. It 

Fig. 1. Flowchart of the AutoScore-Survival framework. The blue shadow blocks are unique in the AutoScore-Survival compared with the original AutoScore. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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consists of a number of binary survival trees grown by a recursive 
splitting of tree nodes [26]. Central elements of the RSF algorithm are 
growing survival trees by maximizing survival difference (log-rank test 
statistic) [27] and estimating the survival probabilities based on the 
ensemble cumulative hazard function. RSF exerts two forms of 
randomization at the ensembling process: a bootstrapping sample of 
data and a randomly selected subset of variables. Averaging over sur
vival trees, as well as the two forms of randomization, makes RSF much 
more accurate in prediction [20] and variable ranking [28,29]. The 
details of RSF are elaborated in eTextbox 1 of the Appendix. 

Then, variable importance is calculated based on the corresponding 
reduction of predictive accuracy when the variable of interest is 
replaced with its random permutation value [25]. Unlike the traditional 
Cox regression, RSF does not assume proportional hazard or any func
tional form for the hazard function and works well for high-dimensional 
EHR data [30]. The ranking list will be used in subsequent modules for 
model building. 

After variable selection, all selected variables are preprocessed for 
variable transformation [5,24]. That is, continuous variables are auto
matically converted into categorical ones through quantiles (e.g., 0%, 
5%, 20%, 80%, 95%, 100%) or k-means clustering (e.g., k = 5) [31]. In 
this use case, quantiles were appropriate for most variables (such as 
common vital signs and laboratory test results), especially those with 
normal or near-normal distributions. 

2.2. Score derivation by weighting and normalization at Module 3 

Similar to AutoScore, in AutoScore-Survival models are built using 
the training set by selecting top-ranking variables from the ranking list, 
and continuous variables are transformed into categorical variables. 
With the selected and transformed variables, we create a time-to-event 
score for the survival data based on Cox Regression [32], with which 
the points can be easily interpreted: 

h(t,X) = h0(t) × e− (β1X1+⋯+βmXm) (1) 

where t represents the survival time, h(t,X) is the hazard function 
given variables (X1⋯Xm), (β1⋯βm) are the coefficients for each variable, 
and h0(t) is the baseline hazard. The Cox regression does not make 
parametric assumptions on h0(t). Weibull and log-normal models can 
also be used as the weighting function, where h0(t) is assumed specific 
functional forms [33]. 

Based on equation (1), a partial score is assigned to each category of 
the variable, which is derived from the coefficients through a two-step 
procedure. The first step is to change the reference category in each 
variable to the category with the smallest β coefficient from the first-step 
regression such that all scores are non-negative. Next, the second-step 
regression is performed to generate new coefficients. The partial 
scores are derived from the second-step regression by dividing each 
coefficient by the minimum of all β’s, and the results are rounded to the 
nearest integer. With a partial integer score associated with each cate
gory of a variable, the total score for each patient is computed by 
summing up all partial scores. 

2.3. Model selection under the intermediate performance evaluation at 
Module 4 

The validation set is used for the intermediate performance evalua
tion. We use a survival parsimony plot to visualize the change in model 
performance with an increasing number of variables, which helps us 
select a model that balances prediction accuracy and parsimony. For 
time-to-event outcomes, the time-dependent area under the curve or 
AUC(t) [34] is applied to measure model performance, which is an 
extension of the commonly used area under the curve (AUC) for 
measuring predictive accuracy of a score when studying binary out
comes. We chose the AUC(t) defined by cumulative sensitivity and 

dynamic specificity (C/D) as recommended by a comprehensive review 
[35], as this definition has more clinical relevance and has commonly 
been used by clinical applications [36]. This AUC(t) is introduced as a 
function of time, estimated through the Kaplan-Meier estimator of the 
survival function [34], to characterize how well the score can distin
guish between subjects who had an event <= t and those who remained 
event-free at time t. To obtain a single overall performance metric in the 
parsimony plot, we derived the integrated AUC (iAUC), a weighted 
average of AUC(t) [37] over a follow-up period (i.e., from Day 1 to Day 
90), summarizing the overall discrimination ability of the time-to-event 
score (see eTextbox 2 for details). 

2.4. Final predictive performance evaluation at Module 6 

We evaluate the final time-to-event score in the test set using mul
tiple performance metrics. In addition to iAUC and AUC(t), we used the 
Harrell’s concordance index (C-index) [38,39], which is the proportion 
of concordant pairs (i.e., when the observation with a longer survival 
time has a larger time-to-event score) in all pairs formed in the test set 
(see eTextbox 3 for details). Thus, the C-index is able to summarize risk, 
event occurrence, and survival time in a single number to distinguish 
between well-behaved scores and quasi-random ones [40]. 

2.5. Algorithm implementation and empirical validations 

We implemented the AutoScore-Survival framework as an R package 
[41]. Given a new dataset with time-to-event outcomes and baseline 
covariates, the AutoScore-Survival package provides a pipeline of 
functions to split data and implement the six modules to generate the 
final scores that require minimal manipulation from users. 

We demonstrated our AutoScore-Survival algorithm using the same 
dataset as our previous paper [5], including 44,918 ICU admissions from 
Beth Israel Deaconess Medical Center (BIDMC) [42] with 24 available 
variables of demographic information, vital signs, and lab tests at 
baseline (t = 0). The survival status and the date of death were addi
tionally obtained from the database to derive the 90-day survival as the 
primary outcome. The baseline characteristics of the dataset were 
described through univariable and multivariable Cox regression. The 
Kaplan-Meier survival curves were generated for different risk groups 
stratified by the scores and compared through the log-rank test. 
Furthermore, we computed the 10th/25th and 50th percentile survival 
time and actual survival probabilities at different time points for each 
stratified group. To evaluate the performance of AutoScore-Survival, we 
compared it with several standard time-to-event prediction models. We 
considered the Cox model with (i) all variables and that with variables 
selected using (ii) stepwise and (iii) LASSO [43] approaches. The step
wise variable selection used AIC and considered both directions in each 
step. The regularization rate of LASSO was optimized through 10-fold 
cross-validation). We also built an RSF using all variables, with the 
widely-accepted default parameters [44] (i.e., 500 trees grown). Two 
widely used ICU-based clinical scores, such as Sequential Organ Failure 
Assessment (SOFA) [45] with eight variables, Simplified Acute Physi
ology Score (SAPS) [46] with 14 variables, were also involved in the 
comparison. Although these two scores were developed based on a bi
nary outcome of ICU mortality instead of time-to-event outcomes, they 
consist of a comparable set of variables, including most vital signs and 
lab tests data collected in ICU, and thus, become reasonable compara
tors. Model performance was reported on the test set, and 100 boot
strapped samples were applied to calculate 95% confidence intervals 
(CI) [47]. 

3. Results 

3.1. Cohort formation and basic covariates analysis 

Overall survival probability was estimated by the Kaplan-Meier 
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method (see Appendix eFig. 1). 37,462 (83.4%) admission episodes 
survived longer than 90 days and were censored at the end of the 90-day 
observation window. 7456 (16.6%) episodes died within 90 days, with a 
median survival time of 15 (IQR: 6–38) days and a mean survival time of 
24.7 days (SD = 24.0). Table 1 summarizes the univariable and multi
variable Cox analyses of all prognostic factors. All variables except 
gender got P < 0.001, making it hard to select a parsimonious model 
according to P values. 

3.2. Parsimony plot and time-to-event scores 

AutoScore-Survival selected seven variables by the parsimony plot 
(Fig. 2a) based on the validation set, as it achieved a good balance be
tween model performance (i.e., iAUC) and complexity (number of var
iables, m). When more variables were added to the time-to-event score, 
the performance was not markedly improved. Fig. 2(b) based on the test 
set also demonstrated the trend. 

The seven-variable time-to-event scores, derived from age, blood 
urea nitrogen, respiration rate, creatinine, anion gaps, lactate levels, and 
temperature, are tabulated in Table 2. The final score ranges from 0 to 
100, where a smaller score indicates a higher survival probability. 
Table 3 shows different score intervals and their corresponding 
percentile survival time and survival probability estimated using the 
Kaplan-Meier method. The survival probability at 3, 7, 30, and 90 days 
decreases with increasing time-to-event scores, as expected. Scores 
larger than 60 correspond to a 90-day survival probability of lower than 
50%. Table 3 and Fig. 3(a) offer a correspondence of scores and pre
dicted survival probability based on the training set. As shown in Fig. 3 
(b), the time-to-event score is able to accurately stratify patients in the 
test set into risk groups based on the Kaplan-Meier curve (P < 0.0001). 

3.3. Performance evaluation and comparison 

The performance of various methods evaluated in the unseen test set 
was reported in Table 4. The seven-variable AutoScore-Survival scores 
achieved an iAUC of 0.782 (95% CI: 0.767–0.794) and a C-index of 
0.753 (95% CI: 0.740–0.762), comparable to the Cox regression with all 
24 variables with an iAUC of 0.785 (95% CI: 0.768–0.798) and a C-index 
of 0.759 (95% CI: 0.748–0.769). LASSO and stepwise Cox regression 
achieved a comparable iAUC of 0.782 (95% CI: 0.766–0.795) and 0.785 
(95% CI: 0.772–0.799) as well. But they selected 17 or 22 variables, 
respectively, failing to filter out redundant information efficiently to 
build up a parsimonious model for easy interpretation, compared with 
only seven variables of the AutoScore-Survival. Although the full RSF 
model achieved the highest iAUC and C-index in our experiment, con
sisting of a number of separate survival trees makes it become a black 
box and not interpretable enough for real-world applications. In terms of 
time-dependent AUC(t = 3,7,30,90), our seven-variable time-to-event 
score achieved comparable performances to 24-variable and stepwise 
Cox regression or LASSO. Furthermore, traditional ICU scores such as 
SOFA and SAPS achieved a much lower AUC(t = 3,7,30,90), even with 8 
and 14 variables, respectively. As these two scores were not originally 
developed on time-to-event outcomes, iAUC and C-index were not 
calculated for them. 

4. Discussion 

In the present study, we developed AutoScore-Survival by extending 
the AutoScore method [5] to time-to-event outcomes and demonstrated 
its application by creating a time-to-event score using real-world data on 
90-day survival in ICU. The score generated by the AutoScore-Survival 
was comparable with other standard survival prediction methods (i.e., 

Table 1 
Univariable and multivariable survival analysis of all variables in the study cohort (N = 44,918).   

Unadjusted HR (95% CI) p-Value Adjusted HR (95% CI) Adjusted p-Value 

Age (years) 1.032 (1.031–1.034)  <0.001 1.027 (1.025–1.029)  <0.001 
Gender     

Female Baseline  Baseline  
Male 0.966 (0.922–1.011)  0.135 1.088 (1.037–1.142)  0.001 

Ethnicity     
White Baseline  Baseline  
Hispanic 0.368 (0.305–0.444)  <0.001 0.844 (0.695–1.026)  0.089 
Asian 0.527 (0.480–0.578)  <0.001 0.968 (0.873–1.073)  0.533 
African 0.482 (0.456–0.510)  <0.001 0.891 (0.834–0.953)  0.001 
Others 0.502 (0.386–0.653)  <0.001 1.369 (1.045–1.795)  0.023 

Insurance     
Medicare Baseline  Baseline  
Government 1.432 (1.166–1.757)  0.001 1.146 (0.933–1.407)  0.194 
Medicaid 2.717 (2.253–3.276)  <0.001 1.184 (0.975–1.439)  0.089 
Private 1.311 (1.082–1.587)  0.006 1.056 (0.870–1.280)  0.582 
Self-Pay 1.363 (0.989–1.879)  0.058 1.622 (1.176–2.237)  0.003 

Heart rate (beats/min) 1.017 (1.015–1.018)  <0.001 1.016 (1.014–1.018)  <0.001 
Systolic blood pressure (mmHg) 0.986 (0.985–0.988)  <0.001 0.988 (0.986–0.991)  <0.001 
Diastolic blood pressure (mmHg) 0.978 (0.976–0.980)  <0.001 0.990 (0.985–0.995)  <0.001 
Mean arterial pressure (MAP; mmHg) 0.977 (0.975–0.979)  <0.001 1.015 (1.009–1.021)  <0.001 
Respiration rate (breaths/min) 1.097 (1.092–1.103)  <0.001 1.058 (1.052–1.065)  <0.001 
Temperature (℃) 0.693 (0.666–0.721)  <0.001 0.796 (0.764–0.829)  <0.001 
Peripheral capillary oxygen saturation (SpO2; %) 0.923 (0.916–0.931)  <0.001 0.981 (0.972–0.991)  <0.001 
Glucose (mg/dL) 1.003 (1.003–1.004)  <0.001 1.000 (1.000–1.001)  0.577 
Anion gap (mEq/L) 1.108 (1.102–1.114)  <0.001 1.036 (1.023–1.050)  <0.001 
Bicarbonate (mmol/L) 0.961 (0.956–0.966)  <0.001 0.984 (0.973–0.995)  0.005 
Creatinine (μmol/L) 1.095 (1.084–1.106)  <0.001 0.911 (0.893–0.930)  <0.001 
Chloride (mEq/L) 0.970 (0.966–0.974)  <0.001 0.962 (0.953–0.972)  <0.001 
Lactate (mmol/L) 1.243 (1.229–1.257)  <0.001 1.117 (1.100–1.134)  <0.001 
Hemoglobin (g/dL) 0.849 (0.839–0.860)  <0.001 0.690 (0.657–0.724)  <0.001 
Hematocrit (%) 0.956 (0.952–0.960)  <0.001 1.101 (1.082–1.119)  <0.001 
Platelet (thousand per microliter) 1.000 (1.000–1.000)  0.014 0.999 (0.999–0.999)  <0.001 
Potassium (mmol/L) 1.129 (1.090–1.169)  <0.001 0.886 (0.851–0.922)  <0.001 
Blood urea nitrogen (BUN; mg/dL) 1.017 (1.016–1.018)  <0.001 1.013 (1.012–1.014)  <0.001 
Sodium (mmol/L) 0.990 (0.985–0.996)  <0.001 1.020 (1.009–1.031)  0.001 
White blood cells (thousand per microliter) 1.007 (1.006–1.007)  <0.001 1.005 (1.004–1.006)  <0.001  
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Cox regression, LASSO, stepwise selection approach) and two clinical 
scores (i.e., SOFA and SAPS) in terms of discriminative capability. 
Although RSF outperformed at the model accuracy, more importantly, 
the AutoScore-Survival scores showed superior interpretability as a 
parsimonious point-based single indicative score for predicting patients’ 
overall survival. This study’s novelty is to integrate the advantages of 
RSF for robust variable selection and Cox regression in its accessibility 
for a generic methodology of quickly creating parsimonious time-to- 
event scores based on survival data. Future studies could apply it to 
various real-world clinical data (e.g., higher-dimensional or from 
different clinical settings) to develop useful time-to-event scores across 
diverse clinical backgrounds. 

The proposed AutoScore-Survival has several advantages in gener
ating time-to-event outcome predictive scores. First, AutoScore-Survival 
could generate a parsimonious score by RSF-based variable selection, 
which has been shown to identify critical variables in high-dimensional 
data with multicollearity [48]. In our example, AutoScore-Survival 
achieved comparable performance with survival models of all 24 vari
ables by selecting only seven variables, while LASSO and stepwise ap
proaches failed to select a parsimonious list of variables. Second, 
AutoScore-Survival categorizes continuous variables to account for 
possible non-linear (e.g., U-shaped [49]) effects. Although some 
advanced regression methods handle nonlinearity [50], categorization 
is favorable in clinical and epidemiological applications for straight
forward indication of identifying high-risk and low-risk values. Third, 
the scoring system is much easier to use and understand for healthcare 
professionals. Compared with other decimal predictors or probability 
outputs, integer time-to-event scores let users make quick predictions by 
simple arithmetic and gauge the effect of changing variables [40]. Our 
scores also gain high efficiency in terms of computational complexity 
even without the need for a computer, making it suitable for resource- 
challenged regions like rural areas. Thus, our scores have the advan
tage of accessibility and easy implementation, especially at the bedside. 
Furthermore, we derived scores from the Cox regression that is familiar 
to clinicians and does not make restrictive assumptions on the baseline 
hazard. Still, our R package [41] allows users to choose parametric 
survival models (Weibull and log-normal regression) as the weighting 
function. Besides right-censored data, left-censored and interval- 
censored Cox models [51] could be further extended by creating a 
different survival object using the Surv function. 

We illustrated the application of AutoScore-Survival in acute care 
settings, where the better performance at the earlier times (e.g., the 
higher AUC(t = 3) and AUC(t = 7)) could help identify patients who 
need intensive care or extra medical attention. AutoScore-Survival is 
also useful for clinical decision-making on chronic diseases, e.g., cancer 
treatment and management [52]. For example, a small score or long 
survival time might indicate more aggressive and progressive cancer 
treatment. In contrast, a short survival time might be the indicator for 
palliative care [53] to optimize the quality of life and mitigate patients’ 

Fig. 2. Parsimony plot (model performance versus complexity) by the inte
grated area under the curve on the (a) validation set and (b) test set. The solid 
black dots show the selected point for achieving the model parsimony (i.e., 
number of variables m = 7). 

Table 2 
Seven-variable AutoScore-Survival-derived scoring system.   

Variable and Interval Partial Score 

Age (years) <30 0 
[30,48) 8 
[48,78) 15 
[78,85) 22 
>=85 25 

Blood urea nitrogen (BUN; mg/dL) <7.5 0 
[7.5,8.25) 17 
[8.25,12) 1 
>=12 8 

Respiration rate (breaths/min) <12 6 
[12,16) 0 
[16,22) 4 
>=22 11 

Creatinine (mg/dL) <0.5 14 
[0.5,0.8) 4 
[0.8,1.6) 0 
>=1.6 1 

Anion Gap (mEq/L) <15 0 
[15,20) 4 
>=20 7 

Lactate (mmol/L) <1 0 
[1,2.5) 3 
[2.5,4) 6 
>=4 15 

Temperature (℃) <36 11 
[36,36.5) 4 
[36.5,37.3) 0 
[37.3,38) 3 
>=38 6  
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suffering. In our study, Table 3 and Fig. 3(a) linked the time-to-event 
scores with survival time and probability. It can help stratify patients 
into risk groups for appropriate allocation of therapeutic and care 
strategies [54]. 

There has been a growing interest in developing time-to-event scores 
in the clinical literature. For example, Kim et al. [55] recently built a 
scoring system to predict the overall survival of patients with advanced 
gastric cancer. Becker et al. [56] and Sharma et al. [57] also developed a 
time-to-event score for patients with general cancer and hepatocellular 
carcinoma, respectively. However, all of them were developed in an ad- 
hoc way. AutoScore-Survival provides a systematic guideline for auto
mated development of time-to-event scores, contributing to data-driven 
research on various types of diseases. In comparison, traditional ICU- 
based scores (i.e., SAPS and SOFA) did not perform well in the test 
set, possibly due to the population shift over time. AutoScore could 
automatically update traditional clinical scores to make them keep 
excelling over time. In addition, AutoScore-Survival scores achieved 
good performances for multiple time points (t = 3,7,30,90), facilitating 
the generalizability of our scoring systems in different scenarios. 

This study also has several limitations. First, we demonstrated the 
effectiveness of AutoScore-Survival for generating time-to-event scores 
using a single dataset extracted from the EHR, which includes 24 vari
ables and more than 40,000 observations. While this dataset represents 
typical clinical data regarding the number of total variables and sample 
size for building up a new scoring system, a higher-dimensional dataset 
or EHR data from other clinical settings should be applied to evaluate 
and validate AutoScore-Survival in future research. Second, the scores 
represent the relative risk in the population if baseline hazard is ignored 
under Cox regression and adjustment is needed in different horizons. 
Third, computational efficiency for developing the scores might become 
a potential challenge in real-world implementation and was not 
compared among other methods, suggesting an area of possible future 
work to address this issue. At last, this is the initial development of 
AutoScore-Survival, where we selected commonly used methods to 
build our framework and demonstrated its usage using EHR data. Our 
demonstration using a large clinical dataset for survival prediction is 
aligned with our aim of developing a parsimonious time-to-event 
scoring system for clinical practices and provides an excellent refer
ence for other clinical applications. Further development could extend 
the framework with advanced algorithms and apply it in various clinical 
use cases. 
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Time-to-event score intervals and their corresponding percentile survival time or survival probability at different time points.  

Score 
Value 

Percent of 
patients 

10th Percentile 
Survival Time 
(days) 

25th Percentile 
Survival Time 
(days) 

Median 
Survival Time 
(days) 

Survival 
probability at three 
days (%) 

Survival 
probability at seven 
days (%) 

Survival 
probability at 30 
days (%) 

Survival 
probability at 90 
days (%) 

≤20  5.33% 90+ 90+ 90+ 100.0%  99.8%  99.4%  98.7% 
(20,30]  18.46% 90+ 90+ 90+ 99.5%  99.2%  97.1%  95.4% 
(30,40]  39.55% 87 90+ 90+ 99.2%  97.6%  93.9%  89.8% 
(40,50]  24.16% 12 90+ 90+ 96.3%  92.5%  83.5%  76.6% 
(50,60]  9.60% 5 19 90+ 92.8%  85.6%  70.6%  58.6% 
＞60  2.91% 2 7 38  83.9%  72.8%  53.3%  43.7%  

Fig. 3. Actual overall survival through risk stratification by AutoScore-Survival 
scores on the (a) training set and (b) test set (Kaplan-Meier estimates). 
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C. Lombard-Bohas, R. Faroux, J.L. Raoul, L. Bedenne, F. Bonnetain, Development 
and validation of a new prognostic score of death for patients with hepatocellular 
carcinoma in palliative setting, J. Hepatol. 54 (1) (2011) 108–114. 

[54] M. Pirovano, M. Maltoni, O. Nanni, M. Marinari, M. Indelli, G. Zaninetta, 
V. Petrella, S. Barni, E. Zecca, E. Scarpi, R. Labianca, D. Amadori, G. Luporini, 
A new palliative prognostic score: a first step for the staging of terminally ill cancer 
patients. Italian multicenter and study group on palliative care, J. Pain Symptom 
Manage. 17 (4) (1999) 231–239. 

[55] J. Kim, J.Y. Hong, S.T. Kim, S.H. Park, S.Y. Jekal, J.S. Choi, D.K. Chang, W.K. Kang, 
S.W. Seo, J. Lee, Clinical scoring system for the prediction of survival of patients 
with advanced gastric cancer, ESMO Open 5 (2) (2020) e000670, https://doi.org/ 
10.1136/esmoopen-2020-000670. 

[56] T. Becker, J. Weberpals, A.M. Jegg, W.V. So, A. Fischer, M. Weisser, F. Schmich, 
D. Rüttinger, A. Bauer-Mehren, An enhanced prognostic score for overall survival 
of patients with cancer derived from a large real-world cohort, Ann. Oncol. 31 (11) 
(2020) 1561–1568. 

[57] S.A. Sharma, M. Kowgier, B.E. Hansen, W.P. Brouwer, R. Maan, D. Wong, H. Shah, 
K. Khalili, C. Yim, E.J. Heathcote, H.L.A. Janssen, M. Sherman, G.M. Hirschfield, J. 
J. Feld, Toronto HCC risk index: a validated scoring system to predict 10-year risk 
of HCC in patients with cirrhosis, J. Hepatol. 68 (1) (2018) 92–99. 

F. Xie et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S1532-0464(21)00288-4/h0100
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0100
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0100
https://doi.org/10.1038/s41598-020-77220-w
https://doi.org/10.1038/s41598-020-77220-w
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0110
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0110
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0110
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0115
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0115
https://cran.r-project.org/web/packages/AutoScore/AutoScore.pdf
https://cran.r-project.org/web/packages/AutoScore/AutoScore.pdf
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0125
https://doi.org/10.2307/2531894
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0135
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0135
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0140
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0140
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0140
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0145
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0145
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0145
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0150
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0150
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0160
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0160
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0165
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0165
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0165
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0165
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0170
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0170
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0175
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0175
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0175
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0180
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0180
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0180
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0185
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0185
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0190
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0190
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0190
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0195
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0195
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0195
https://doi.org/10.1016/j.jbi.2020.103496
https://doi.org/10.1016/j.jbi.2020.103496
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0215
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0215
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0225
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0225
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0225
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0225
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0225
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0230
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0230
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0230
https://doi.org/10.1136/bmjopen-2019-031382
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0240
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0240
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0240
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0240
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0240
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0245
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0245
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0245
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0250
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0250
https://doi.org/10.2307/2530698
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0260
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0260
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0260
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0260
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0265
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0265
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0265
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0265
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0270
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0270
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0270
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0270
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0270
https://doi.org/10.1136/esmoopen-2020-000670
https://doi.org/10.1136/esmoopen-2020-000670
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0280
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0280
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0280
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0280
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0285
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0285
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0285
http://refhub.elsevier.com/S1532-0464(21)00288-4/h0285

	AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data
	1 Introduction
	2 Methods
	2.1 Variable ranking with random survival forests at Module 1
	2.2 Score derivation by weighting and normalization at Module 3
	2.3 Model selection under the intermediate performance evaluation at Module 4
	2.4 Final predictive performance evaluation at Module 6
	2.5 Algorithm implementation and empirical validations

	3 Results
	3.1 Cohort formation and basic covariates analysis
	3.2 Parsimony plot and time-to-event scores
	3.3 Performance evaluation and comparison

	4 Discussion
	Funding
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Appendix A Supplementary material
	References


